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Abstract II. Modelling of a Heat Exchanger

Two models for two different control schemes are

developed for a parallel flow heat exchanger. First by
spatially lumping a heat exchanger model, a good
approximate model which has a high system order is
produced. Model reduction techniques are applied to these
obtain low order models that are suitable for dynamic
analysis and control design. The simulation method is
discussed to ensure a valid simulation result.

I. Introduction

A heat exchanger is a device that is used to change the
temperature distribution of two materials when they are in
direct or indirect contact. They are used in many industries,
particulerly in metallurgy, chemistry, etc [1]. A heat
exchanger can be classified into two types based flow
directions of two materials, namely, parallel flow and
counter flow. Many heat exchangers being manufactured are
basically open loop systems, i.e, the performance of the heat
exchanger is determined by its fixed structural and
mechanical design (e.g, size of compartment and tube, speed
of cooling fan, etc.). If the performance (temperature
distribution) of a heat exchanger deviates beyond the

tolerance of the practical requirement, it has to be replaced
by a new one.

Part of the reason for this situation is the lack of a

suitable model for feedback control design. However,
modelling a heat exchanger for dynamic analysis and control
design is not an easy task for the following reasons.

(1) As will be seen, the dynamics of the heat exchanger

is described by a partial differential equation, thus it is truly
an infinite demesional system, which makes it difficult for
the theories developed for lumped systems to be applied.

(2) Using some approximate techniques, the resulting
system with acceptable accuracy usually has too high of
order for easy dynamic analysis and control design.

This paper is a study of a parallel flow heat exchanger
and solves the above problems with available techniques.
The same techniques can be easily applied to counter flow
heat exchangers.

Parallel Flow tteat Exchanger
The following is an illustrative figure of a double-pipe

parallel flow heat exachanger [1].
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Ignoring the influence of of the partition wall (thin wall
exchanger) the temperature distribution is given by :

I_x

OQl(x,t) _
Ot

onQ2(x,t ) _

Ot

v_°qQl(x't_)- aiQffx,t)+a21[Q2(x,t)-Ql(x,t)l
,gx

v_ - a2Q2(x,t ) + a21[ Q l (x,t )-Qz( x,t ) ]
Ox

(1)

where vl,v2 are the velocities of the two imcompressible

flows, and al, a2, a21 are heat conductivity coefficients.

In what follows, it is also assumed that the exchanger is
well isolated, i.e, aj=a2=O. Upon these assumptions, the

dynamic equations for the parallel flow heat exchanger are
then:
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Control problem statement.

The control problem related to the heat exchanger here is

to regulate the temperature of the cold medium at its outlet.
In order to achieve this control goal, there are at least two

control schemes that can be adopted. The ftrst one is to use

the temperature of the hot medium at its inlet as the control

signal (input scheme 1), while the other is to use theflow
rate of the hot medium as the control signal (input scheme

2). It should be pointed out that although almost all the

existing models are derived for the first control method [2],
this method suffers from the time delay to change the

temperature of the hot medium. In contrast, the second

control method is easier to implement in practice because

the flow rate is manipulated by mechanical devices.
Therefore obtaining a model for the second control method,
which the authors have not seen in most of the related

literature, has practical significance, again assuming

imcompressible flow.
For either control method mentioned above, a system

model (transfer function) needs to be developed for dynamic

analysis and control design. As the system described by (2)
is a Distributed Parameter System (DPS), it is then

essentially an infinite demensional system, which makes it

difficult for the control methods developed for finite lumped

systems to be applied. In [3], a very complicated exact

solution invloving many irrational functions is given for the

input scheme 1. This model, however, is very difficult to

use for practical control design. Many efforts [4,5] have been

made to simplify this transfer function, but they are still

infinite demensional. An attempt was made in [6] to
approximate the heat exchanger purely by a polynomial

function. However because there the authors used only two

lumps to represent the whole exchanger, the results are

predictably too rough for many practical uses. In fact, the

inherent time delay property of the heat exchanger is

completely lost in that model.

This paper proposes an another way for obtaining a

system model which has adequate accuracy, low system

order, and involves only polynomial functions.

System Modelling

Partition the length of the heat exchanger into small

lumps uniformly at h, 2h, 3h, ..., Nh, where h equals the

unit segment of x, i.e,

h=zlx
Define the system state to be the temperature at each

lump as:

,,--toJ ... QIQ.'o3o3...Qh

where Qf (p=1,2,j=1,2, ..., N) is the jth node of the pth
tube.

Use the following approximation for spatial
derivation:

_j_ Qj+I- Qj
_x h

Then for input scheme 1, the normalized original system

(2) (Vl=V2 =a21=1) is approximated by:

bJ- e'+,-Q/+Q:.Q/
h (3)
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It is easy to write the above equations in the form:

£=Ax +Bu
where:
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where a=l/h, b=-l-l/h, and u=Q] is the system input.

Therefore the system order is 2N-2, where N is the lump

number of each tube. Figure 1 show the step response of the

approximate open loop system with 40, 20, 10, 4, 2

lumps, respectively, for h=.025, .05, .1, .25, .5 and
T=.0249, .0499, .0999, .2499, .4999. It is seen that the

response of the system with 40 lumps is very close to that
of exact solution [3].

For input scheme 2, Vl is used as the control signal.

However Vl is coupled with the system state Q1 (see (2)),

using the same derivation as above will result in a time

varying system. To avoid this problem, the steady states of

OQ]/cgx are used to replace the time varying OQf/cgx, i.e,

the system (2) is approximated by the following form:
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This model is then valid for small perturbations from the

given steady states.

The state space form of the system is:

k = Ax+Bu
where:
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and u=v 1 is the system input.

In both schemes, the system output vector is:

C=[0 0 ...0 10 0...I]

Figure 2 shows the seady states of system, which are

used in the input scheme 2. The step response of the

approximate open loop system with the N being 40, 20, 10,

4,2 and the same h and T as above for input scheme 2 are

shown in figure 3.

Model reduction

The higher order model, though a good approximation of

the original system, is not practical for control design due to

its high (80th) order. Using model reduction techniques,
these high order system can be reduced to lower order models

while keeping the original system properties.

For the model corresponding to input scheme 1, the real

part of the eigenvalues of the system descend gradually from

-53 to -30, and do not display distinct time scales. But their

Hankel singular values decrease fairly fast with the first

seven of them being:
.3398, .1891, .0743, .0217, .0049, O, 0 ....

Thus keeping the lust four states [7] results in a fourth

order system with transfer function:

3 2tT,l_l = -.045s +1.1875s -13.5142s+64.9335
s% 73217s_ +473383s2 +124.6222s +159.7031

The step response of this reduced order system is shown

in figure 4, where it is seen that it is a very good
approximation to the previous 80th order system. It should

be emphasized that the reduced order system is much bettter

than the system of the same order obtained directly by using

less corresponding lumps as also shown in figure 4.

For the model corresponding to input scheme 2, the

eigenvalues of the system are located in two groups which

have distinctive time scales. One group of eigenvalues is
located around -40+_lOj, while the other group at -.98+_.006j.

Applying the sigular perturbation method [8] to the 80th

order model results in a second order system with transfer
function:

G(s) = "02 s2"111876s + 34"0546
s2 + l.8236s +.8325

The step response of this system is shown in figure 5
and can be compared with the previous 80th order system

and the same order system but obtained from less lumps.

Again this reduced order model is a better approximation to

the original system.

III. System Simulation

It is important for computer simulation to reflect the

inherent system properties correctly. Realizing that the
characteristic equation contains the most important

inforamtion about the system, good simulation can only be

achieved by mapping the s-plane properties of the system

into z-plane. The simulation described in the paper is guided

by the techniques developed in [9]. These techniques have

distinct merits in analyzing a simulation method for DPS in

terms of its efficiency, intuition and convenience of use.

Due to the limited space, only the guidelines as to the

choice of T and h are given as follows. Readers who are

interested in the detailed analysis are recommended to
consult further references in [9].

(1) T_<h is the neccessary condition for stability due to CFL
condition;

(2) T=h gives the best results;
(3) when T=h, the smaller T is, the better the results

will be due to the damped second eigenvalue;

(4) In practice, T is chosen slightly smaller than h to avoid

oscillation due to the discretization of the system.

Summary

This paper proposes an alternative way to obtain two

simple, fairly accurate models for the heat exchanger. It is

concluded that using model reduction techniques applied to

highly accurate finite difference approximations is much

better than using low order (small number of lumps) finite

difference approximations.

References

[1] Butkovskiy, A. G, "Structural Theory of Distributed

system", Ellis Horwood Limited, 1983

[2] Welty, J. R., Engineering Heat Exchanger, Wiley,
New York, 1978.

[3] Gorecki, H., Fuksa, S., Grabowski, P. and Kor),towski,

A., Analysis and Synthesis of Time Delay Systems,

John Wiley & Sons, 1978

[4] Paynter, H.M and Takahashi, Y. "A New Method of



EvaluatingDynamicResponseofCounterFlowand
ParallelFlowHeatExchanger",Trans. ASME, 78,

1956, pp.749
[5] Friedly, J. C., "Asymptotic Approximation to Plug

Flow Process Dynamics", JACC, June, 1967
[6] Shoureshi, R. and Paynter, H. M., "Simple Models for

Dynamics and Control of Heat Exchanger", Proceedings

of the 27th CDC, Austin, Texas, De_, 1988
[7] Moore, B. C., "Principal Component Analysis in Linear

Systems: Controllability, Observability, and Model

Reduction", IEEE Trans. on Automatic Control, vol. ac-

26, 1981

[8] Kokotovic, P. V. and Khalil, H. K., "Singular

Perturbation in Systems and Control", IEEE Press, New

York, 1986

[9] Hartley, T.T., "A Qualitative Theory for Simulating
Distributed Parameter Systems", Proc. oflECON'89,
1989

50

40

_30
R

20

I0

0

0

Fig. 1

80th order

i I t _ .,e'*
I • j. _ o

• • • .f _

.-. 2nd_3er
I /.,- "
Itl

I I_ t

ii

Time (sec.)

Step responses of different order systems (scheme1)

5O

40

3o

l0

0

80th order

2rid order

0 0.5 1 1.5 2 2.5

Time (sec.)

Fig. 3 Step responses of different order systems (scheme 2)
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Figure 4 Comparison of different system models (scheme 1)

1o0

$0

20

f

0 .5 10 15 20 25 30 35 40

Lump

Figure 2 Steady states of the system response
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Figure 5 Comparison of different system models (scheme 2)


